Температура плавления различных металлов. Основные физические свойства железа

Железом человек начал владеть (ковать, плавить) спустя несколько тысячелетий после освоения работ с медью. Первое самородное железо в виде комков было найдено на Ближнем Востоке в 3000 году А металлургия железа, по мнению специалистов, возникла в нескольких местах планеты, разные народы осваивали этот процесс в разное время. Благодаря этому железо как материал для изготовления орудий труда, охоты и войны вытеснило камень и бронзу.

Первые процессы изготовления железа назывались сыродутными. Суть заключалась в том, что в яму засыпалась железная руда с древесным углем, который разжигали и плотно закупоривали, оставляя дутьевое отверстие, через которое подавался свежий воздух для дутья. В процессе такого нагрева температура плавления железа, конечно, не могла быть достигнута, получалась размягченная масса (крица), в которой находился шлак (зола от топлива, окислы руды и породы).

Далее полученную крицу несколько раз проковывали, удаляя шлак и другие не нужные включения, этот трудоемкий процесс производился по несколько раз, в результате чего из общей массы до финишной операции доходила пятая часть. С изобретением водяного колеса появилась возможность подавать значительное количество воздуха. Благодаря такому дутью температура плавления железа стала достижимой, появился металл в жидком виде.

Этим металлом был чугун, который не ковался, но было замечено, что он хорошо заполняет форму. Это были первые опыты по которое с некоторыми усовершенствованиями и изменениями дошло до наших дней. Со временем был найден способ переработки чугуна в сварочное железо. Куски чугуна загружались с древесным углем, в ходе этого процесса чугун размягчался, происходило окисление примесей, в том числе углерода. В результате чего металл становился густым, температура плавления железа повышалась, т.е. получалось сварочное железо.

Таким образом, металлурги того времени смогли разделить единый процесс на две ступени. Этот двухступенчатый процесс в самой идее сохранился до настоящего времени, изменения в большей степени касаются появлению процессов, происходящих на втором этапе. Чистое железо или металл, имеющий минимум примесей, практического применения почти не имеет. Температура плавления железа по диаграмме железо - углерод находится в точке А, что соответствует 1535 градусам.

Железа наступает при достижении отметки 3200 градусов.

На открытом воздухе железо со временем покрывается оксидной пленкой, во влажной среде появляется рыхлый слой ржавчины. Железо с момента его появления и по сегодняшний день является одним из главных металлов. Используется железо, главным образом, в виде сплавов, которые различаются по свойствам и составу.

При какой температуре плавится железо, зависит от содержания углерода и других компонентов, входящих в состав сплава. Наибольшее применение имеют углеродистые сплавы - чугун и сталь. Сплавы, содержащие углерод более 2%, называют чугуном, менее 2% относятся к стали. Чугун получают в доменных печах, путем переплава обогащенных на аглофабрике руд.

В мартеновских, электрических и индукционных печах, в конвертерах.

В качестве шихты применяется металлический лом и чугун. Путем окислительных процессов из шихты удаляется лишний углерод и вредные примеси, а добавки легирующих материалов позволяют получить нужную Для получения стали и других сплавов современные металлургия использует технологии электрошлакового переплава, вакуумные, электронно-лучевые и плазменные плавки.

В разработке находятся новые методы плавления стали, предусматривающие автоматизацию процесса и обеспечивающие получение высококачественного металла.

Научные разработки достигли такого уровня, когда можно получать материалы, выдерживающие вакуум и большое давление, большие температурные перепады, агрессивную среду, радиационные излучения и т.п.

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным - физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании - при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне :

  1. Солидус - линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус - окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на :

  • Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения - точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

Название T пл, °C
Алюминий 660,4
Медь 1084,5
Олово 231,9
Цинк 419,5
Вольфрам 3420
Никель 1455
Серебро 960
Золото 1064,4
Платина 1768
Титан 1668
Дюралюминий 650
Углеродистая сталь 1100−1500
Чугун 1110−1400
Железо 1539
Ртуть -38,9
Мельхиор 1170
Цирконий 3530
Кремний 1414
Нихром 1400
Висмут 271,4
Германий 938,2
Жесть 1300−1500
Бронза 930−1140
Кобальт 1494
Калий 63
Натрий 93,8
Латунь 1000
Магний 650
Марганец 1246
Хром 2130
Молибден 2890
Свинец 327,4
Бериллий 1287
Победит 3150
Фехраль 1460
Сурьма 630,6
карбид титана 3150
карбид циркония 3530
Галлий 29,76

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Прочность металлов

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность - возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа - Мега Паскалях.

Существуют следующие группы прочности металлов :

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.

Таблица прочности металлов

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 - 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Температура плавления железа является важным показателем технологии производства металла и его сплавов. При выплавке сырья учитываются физические и химические свойства руды и металла.

Самый распространенный химический элемент на Земле.

Физические и химические свойства железа

  • Химический элемент № 26 является самым распространенным в Солнечной системе. По данным исследований содержание железа в ядре Земли составляет 79–85,5%. По распространенности в коре планеты оно уступает только алюминию.
  • Металл в чистом виде имеет белый цвет с серебристым оттенком, отличается пластичностью. Наличие примесей определяет его физические параметры. Железу свойственно реагировать на магнит.
  • Для этого химического элемента характерен полиморфизм, который имеет место при нагревании. Повышенная концентрация металла наблюдается в местах извержения пород. Промышленные месторождения формируются в результате внешних и внутренних процессов, происходящих в земной коре.
  • В речной воде содержится приблизительно 2 мг/л металла, а показатель для морской воды меньше в 100–1000 раз.
  • Железо имеет несколько степеней окисления, определяющих его геохимическую особенность нахождения в определенной среде. В нейтральной форме металл находится в ядре Земли.
  • Оксид железа является основной формой нахождения в природе, а оксидное железо размещается в самой верхней части земной коры в составе осадочных образований.
  • Содержание химического элемента № 26 в минералах с нестабильным составом увеличивается с уменьшением температурного градиента. Кипение происходит при нагревании до + 2861 °C. Удельная теплота плавления составляет 247,1 КДж/кг.

Добыча металла

Среди руд, содержащих железо, сырьем для промышленного производства являются:

  • гематит;
  • гетит;
  • магнетит.

Гетит и гидрогетит формируют образования в коре выветривания, размером сотни метров. В зоне шельфа и озерах коллоидные растворы минералов в результате осаждения образуют оолиты (бобовые железные руды).

Пирит и пирротин, широко распространенные в природе минералы железа, используются в качестве сырья для производства серной кислоты.

К часто встречающимся минералам железа относятся также:

  • сидерит;
  • леллингит;
  • марказит;
  • ильменит;
  • ярозит.

Минерал мелантерит, представляющий собой хрупкие зеленые кристаллы со стеклянным блеском, используется в фармацевтической промышленности для производства железосодержащих препаратов.

Основное месторождение этого металла находится в Бразилии. В последнее время внимание сосредоточивается на разработке конкреций, присутствующих на морском дне, в которых содержатся железо и марганец.

Плавление железа

От чего зависит температура плавления железа?

Производство металла предусматривает различные технологии его извлечения из рудного сырья. Наиболее распространена выплавка железа доменным способом.

Перед тем как выплавлять металл, его восстанавливают в печи при температуре +2000 °C. Для извлечения примесей добавляется флюс, разлагающийся при нагревании до оксида с последующим соединением с диоксидом кремния и образованием шлака.

Кроме доменного способа выплавка железа производится путем обжига измельченной руды с глиной. Из смеси формируются окатыши и обрабатываются в печи с восстановлением водородом. Дальнейшая плавка железа производится в электрических печах.

Изготовление сплавов в печах.

Свойства металла зависят от чистоты материала. Для технически чистого железа температура плавления составляет +1539 °C. Сера является вредной примесью. Извлечь ее можно только из жидкого раствора. Химически чистый материал получают в результате электролиза солей металла.

Сплавы металла

В чистом виде этот материал мягкий, поэтому для повышения прочности в состав вводят углерод.

В металлургии сплавы железа называют черными металлами.

В зависимости от компонентов лигатуры меняются свойства материалов. Температура плавления железа также меняется при наличии лигатурных компонентов.

Удельная теплота плавления стали равна 84 кДж. Этот показатель обозначает, что при температуре плавления стали для перевода 1 кг сплава из кристаллического в жидкое состояние необходимо 84 кДж энергии.

Соединения из различных металлов образуют сплавы. Удельная теплота плавления чугуна составляет 96–140 кДж. Чугун содержит до 4% углерода, 1,5% марганца, до 4,5% кремния и примеси в виде серы и фосфора. Различают белый и серый сплавы.

В белом часть углерода находится в соединении карбида железа. Такой сплав отличается хрупкостью и твердостью. Он предназначается для изготовления конструкций и деталей.

Серый сплав, содержащий углерод в виде графита, легко поддается обработке. Чугун выплавляют из железной руды в доменных печах. Плавление руды сопровождается восстановительной реакцией железа из оксидов углеродом.

Большинство веществ может плавиться с увеличением объема при нагревании. Для чугуна объемом 1000 см³ этот показатель составляет 988–994 см³.

Чугун является сырьем для производства стали, отличающейся содержанием углерода (не выше 2,14%).

По химическому составу различают сталь:

  • легированную;
  • углеродистую.

Углеродистая сталь содержит примеси серы, фосфора и кремния. Она отличается низкими электротехническими свойствами, низкой прочностью, легко поддается процессу коррозии.

Наличие лигатурных добавок придает стали новые технические свойства. В качестве дополнительных компонентов используют:

  • молибден;
  • никель;
  • вольфрам;
  • хром;
  • ванадий.

В состав высоколегированной стали входит не более 10% добавок. Сплав отличается прочностью. Технология производства стали из чугуна позволяет получить высококачественный материал для производства:


В качестве сырья сталь используется в разных отраслях промышленности. Без нее невозможно представить авиастроение, кораблестроение, автомобильную отрасль и многие другие производственные сферы.

Металлы обладают рядом оригинальных свойств, которые присущи только этим материалам. Существует температура плавления металлов, при которой кристаллическая решетка разрушается. Вещество сохраняет объем, но уже нельзя говорить о постоянстве формы.

В чистом виде отдельные металлы встречают крайне редко. На практике применяют сплавы. У них есть определенные отличия от чистых веществ. При образовании сложных соединений происходит объединение кристаллических решеток между собой. Поэтому у сплавов свойства могут заметно отличаться от составляющих элементов. Температура плавления уже не остается постоянной величиной, она зависит от концентрации входящих в сплав ингредиентов.

Понятие о шкале температур

Некоторые неметаллические предметы тоже обладают похожими свойствами. Самым распространённым является вода. Относительно свойств жидкости, занимающей господствующее положение на Земле, была разработана шкала температур. Реперными точками признаны температура изменения агрегатных состояний воды:

  1. Превращения из жидкости в твердое вещество и наоборот приняты за ноль градусов.
  2. Кипения (парообразования внутри жидкости) при нормальном атмосферном давлении (760 мм рт. ст.) принята за 100 ⁰С.

Внимание! Кроме шкалы Цельсия на практике измеряют температуру в градусах Фаренгейта и по абсолютной шкале Кельвина. Но при исследовании свойств металлических предметов другие шкалы используют довольно редко.

Кристаллические решетки металла

Твердое вещество характеризуется постоянством:

  • формы, предмет сохраняет линейные размеры в разных условиях;
  • объема, предмет не изменяет занимаемое количество вещества;
  • массы, количество вещества, выраженное в граммах (килограммах, тоннах);
  • плотности, в единице объема содержится постоянная масса.

При переходе в жидкое состояние, достигнув определенной температуры, кристаллические решетки разрушаются. Теперь нельзя говорить о постоянстве формы. Жидкость будет принимать ту форму, в какую ее зальют.

Когда происходит испарение, то постоянным остается только масса вещества. Газ займет весь объем, который будет ему предоставлен. Здесь нельзя утверждать, что плотность постоянная величина.

Когда соединяются жидкости, то возможны варианты:

  1. Жидкости полностью растворяются одна в другой, так себя ведут вода и спирт. Во всем объеме концентрация веществ будет одинаковой.
  2. Жидкости расслаиваются по плотности, соединение происходит только на границе раздела. Только временно можно получать механическую смесь. Перемешав разные по свойствам жидкости. Примером является масло и вода.

Металлы образуют сплавы в жидком состоянии. Чтобы получить сплав, каждый из компонентов должен быть в жидком состоянии. У сплавов возможны явления полного растворения одного в другом. Не исключаются варианты, когда сплав будет получен только в результате интенсивного перемешивания. Качество сплава в этом случае не гарантируется, поэтому стараются не смешивать компоненты, которые не позволяют получать стабильные сплавы.

Образующиеся растворимые друг в друге вещества при застывании образуют кристаллические решетки нового типа. Определяют:

  • Гелиоцентрированные кристаллические решетки, их еще называют объёмно-центрированными. В середине находится молекула одного вещества, а вокруг располагаются еще четыре молекулы другого. Принято называть подобные решетки рыхлыми, так как в них связь между молекулами металлов слабее.
  • Гранецентрированные кристаллические решетки образуют соединения, в которых молекулы компонента располагаются на гранях. Металловеды называют подобные кристаллические сплавы плотными. В реальности плотность сплава может быть выше, чем у каждого из входящих в состав компонентов (алхимики средних веков искали варианты сплавов, при которых плотность будет соответствовать плотности золота).

Температура плавления металлов

Разные вещества имеют различную температуру плавления. Принято делить металлы на:

  1. Легкоплавкие – их достаточно нагревать до 600 ⁰С, чтобы получать вещество в жидком виде.
  2. Среднеплавкие металлы расплавляются в диапазоне температур 600…1600 ⁰С.
  3. Тугоплавкими называют металлы, которые могут расплавляться при температуре более 1600 ⁰С.

В таблице по возрастанию показаны легкоплавкие металлы. Здесь видно, что самым необычным металлом является ртуть (Hg). В обычных условиях она находится в жидком состоянии. Этот металл имеет самую низкую температуру плавления.

Таблица 1, температуры плавления и кипения легкоплавких металлов:

Таблица 2, температуры плавления и кипения среднеплавких металлов:

Таблица 3, температуры плавления и кипения тугоплавких металлов:

Чтобы вести процесс плавки используют разные устройства. Например, для выплавки чугуна применяют доменные печи. Для плавки цветных металлов производят внутренний нагрев с помощью токов высокой частоты.

В изложницах, изготовленных из неметаллических материалов, находятся цветные металлы в твердом состоянии. Вокруг них создают переменное магнитное поле СВЧ. В результате кристаллические решетки начинают расшатываться. Молекулы вещества приходят в движение, что вызывает разогрев внутри всей массы.

При необходимости плавки небольшого количества легкоплавких металлов используют муфельные печи. В них температура поднимается до 1000…1200 ⁰С, что достаточно для плавки цветных металлов.

Черные металлы расплавляют в конвекторах, мартенах и индукционных печах. Процесс идет с добавлением легирующих компонентов, улучшающих качество металла.

Сложнее всего проводить работу с тугоплавкими металлами. Проблема в том, что нужно использовать материалы, имеющие температуру более высокую, чем температура плавления самого металла. В настоящее время авиационная промышленность рассматривает использование в качестве конструкционного материала Титан (Ti). При высокой скорости полета в атмосфере происходит разогрев обшивки. Поэтому нужна замена алюминию и его сплавам (AL).

Максимальная температура плавления этого довольного легкого металла привлекает конструкторов. Поэтому технологи разрабатывают технологические процессы и оборудование, чтобы производить детали из титана и его сплавов.

Сплавы металлов

Чтобы проектировать изделия из сплавов, сначала изучают их свойства. Для изучения в небольших емкостях расплавляют изучаемые металлы в разном соотношении между собой. По итогам строят графики.

Нижняя ось представляет концентрацию компонента А с компонентом В. По вертикали рассматривают температуру. Здесь отмечают значения максимальной температуры, когда весь металл находится в расплавленном состоянии.

При охлаждении один из компонентов начинает образовывать кристаллы. В жидком состоянии находится эвтектика – идеальное соединение металлов в сплаве.

Металловеды выделяют особое соотношение компонентов, при котором температура плавления минимальная. Когда составляют сплавы, то стараются подбирать количество используемых веществ, чтобы получать именно эвтектоидный сплав. Его механические свойства наилучшие из возможных. Кристаллические решетки образуют идеальные гранецентрированные положения атомов.

Изучают процесс кристаллизации путем исследования твердения образцов при охлаждении. Строят специальные графики, где наблюдают, как изменяется скорость охлаждения. Для разных сплавов имеются готовые диаграммы. Отмечая точки начала и конца кристаллизации, определяют состав сплава.

Сплав Вуда

В 1860 г. американский зубной техник Барнабас Вуд искал оптимальные соотношения компонентов, чтобы изготавливать зубы для клиентов при минимальных температурах плавления. Им был найден сплав, который имеет температуру плавления всего 60,2…68,5 ⁰С. Даже в горячей воде металл легко расплавляется. В него входят:

  • олово - 12,5…12,7 %;
  • свинец - 24,5…25,0 %;
  • висмут - 49,5…50,3 %;
  • кадмий - 12,5…12,7 %.

Сплав интересен своей низкой температурой, но практического применения так и не нашел. Внимание! Кадмий и свинец – это тяжелые металлы, контакт с ними не рекомендован. У многих людей могут происходить отравления при контакте с кадмием.

Сплавы для пайки

На практике многие сталкиваются с плавлением при пайке деталей. Если поверхности соединяемых материалов очищены от загрязнений и окислов, то их нетрудно спаять припоями. Принято делить припои на твердые и мягкие. Мягкие получили наибольшее распространение:

  • ПОС-15 - 278…282 °C;
  • ПОС-25 - 258…262 °C;
  • ПОС-33 - 245…249 °C;
  • ПОС-40 - 236…241 °C;
  • ПОС-61 - 181…185 °C;
  • ПОС-90 - 217…222 °C.

Их выпускают для предприятий, изготавливающих разные радиотехнические приборы.

Твердые припои на основе цинка, меди, серебра и висмута имеют более высокую температуру плавления:

  • ПСр-10 - 825…835 °С;
  • ПСр-12 - 780…790 °С;
  • ПСр-25 - 760…770 °С;
  • ПСр-45 - 715…721 °С;
  • ПСр-65 - 738…743 °С;
  • ПСр-70 - 778…783 °С;
  • ПМЦ-36 - 823…828 °С;
  • ПМЦ-42 - 830…837 °С;
  • ПМЦ-51 - 867…884 °С.

Использование твердых припоев позволяет получать прочные соединения.

Внимание! Ср означает, что в составе припоя использовано серебро. Такие сплавы обладают минимальным электрическим сопротивлением.

Температура плавления неметаллов

Неметаллические материалы могут быть представлены в твердом и жидком виде. Неорганические вещества представлены в табл. 4.

Таблица 4, температура плавления неорганических неметаллов:

На практике для пользователей наибольший интерес представляют органические материалы: полиэтилен, полипропилен, воск, парафин и другие. Температура плавления некоторых веществ показана в табл. 5.

Таблица 5, температура плавления полимерных материалов:

Внимание! Под температурой стеклования понимают состояние, когда материал становится хрупким.

Видео: температура плавления известных металлов.

Заключение

  1. Температура плавления зависит от природы самого вещества. Чаще всего – это постоянная величина.
  2. На практике используют не чистые металлы, а их сплавы. Обычно они имеют свойства гораздо лучше, чем чистый металл.

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422С о, самая низкая - у ртути: элемент плавится уже при - 39С о. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Плавление всех металлов происходит примерно одинаково - при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул , возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

В зависимости от температуры плавления металлы делятся на:

В зависимости от температуры плавления выбирают и плавильный аппарат . Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны .

  1. Увеличивается давление - увеличится величина плавления.
  2. Уменьшается давление - уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С о)

Название элемента Латинское обозначение Температуры
Плавления Кипения
Олово Sn 232 С о 2600 С о
Свинец Pb 327 С о 1750 С о
Цинк Zn 420 С о 907 С о
Калий K 63,6 С о 759 С о
Натрий Na 97,8 С о 883 С о
Ртуть Hg - 38,9 С о 356.73 С о
Цезий Cs 28,4 С о 667.5 С о
Висмут Bi 271,4 С о 1564 С о
Палладий Pd 327,5 С о 1749 С о
Полоний Po 254 С о 962 С о
Кадмий Cd 321,07 С о 767 С о
Рубидий Rb 39,3 С о 688 С о
Галлий Ga 29,76 С о 2204 С о
Индий In 156,6 С о 2072 С о
Таллий Tl 304 С о 1473 С о
Литий Li 18,05 С о 1342 С о

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о)

Название элемента Латинское обозначение Температураы
Плавления Кипения
Алюминий Al 660 С о 2519 С о
Германий Ge 937 С о 2830 С о
Магний Mg 650 С о 1100 С о
Серебро Ag 960 С о 2180 С о
Золото Au 1063 С о 2660 С о
Медь Cu 1083 С о 2580 С о
Железо Fe 1539 С о 2900 С о
Кремний Si 1415 С о 2350 С о
Никель Ni 1455 С о 2913 С о
Барий Ba 727 С о 1897 С о
Бериллий Be 1287 С о 2471 С о
Нептуний Np 644 С о 3901,85 С о
Протактиний Pa 1572 С о 4027 С о
Плутоний Pu 640 С о 3228 С о
Актиний Ac 1051 С о 3198 С о
Кальций Ca 842 С о 1484 С о
Радий Ra 700 С о 1736,85 С о
Кобальт Co 1495 С о 2927 С о
Сурьма Sb 630,63 С о 1587 С о
Стронций Sr 777 С о 1382 С о
Уран U 1135 С о 4131 С о
Марганец Mn 1246 С о 2061 С о
Константин 1260 С о
Дуралюмин Сплав алюминия, магния, меди и марганца 650 С о
Инвар Сплав никеля и железа 1425 С о
Латунь Сплав меди и цинка 1000 С о
Нейзильбер Сплав меди, цинка и никеля 1100 С о
Нихром Сплав никеля, хрома, кремния, железа, марганца и алюминия 1400 С о
Сталь Сплав железа и углерода 1300 С о - 1500 С о
Фехраль Сплав хрома, железа, алюминия, марганца и кремния 1460 С о
Чугун Сплав железа и углерода 1100 С о - 1300 С о

Таблица тугоплавких металлов и сплавов (свыше 1600С о)

Название элемента Латинское обозначение Температуры
Плавления Кипения
Вольфрам W 3420 С о 5555 С о
Титан Ti 1680 С о 3300 С о
Иридий Ir 2447 С о 4428 С о
Осмий Os 3054 С о 5012 С о
Платина Pt 1769,3 С о 3825 С о
Рений Re 3186 С о 5596 С о
Хром Cr 1907 С о 2671 С о
Родий Rh 1964 С о 3695 С о
Рутений Ru 2334 С о 4150 С о
Гафний Hf 2233 С о 4603 С о
Тантал Ta 3017 С о 5458 С о
Технеций Tc 2157 С о 4265 С о
Торий Th 1750 С о 4788 С о
Ванадий V 1910 С о 3407 С о
Цирконий Zr 1855 С о 4409 С о
Ниобий Nb 2477 С о 4744 С о
Молибден Mo 2623 С о 4639 С о
Карбиды гафния 3890 С о
Карбиды ниобия 3760 С о
Карбиды титана 3150 С о
Карбиды циркония 3530 С о
Понравилась статья? Поделитесь ей
Наверх